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ABSTRACT: A system of two-dimensional nonlinear equations of hydrodynamics is considered. It is shown 

that for the this system in the general case a solution with weak discontinuity-type singularity behaves as 

S x y t( , , ) ,where S(x,y,t)>0 is a smooth function. The necessary conditions and series of corresponding 

differential equations are obtained for the existence of a solution.  

 

 

0. Introduction 

 

     The role of singularities for solutions of equations of gas- and hydrodynamics is well known both in the 

theory of the corresponding equations and in applications.  Unlike linear equations, whose solutions, at least in 

the small, inherit the type of singularity of the initial condition, for nonlinear equations only specific structure 

singularities can expand with preservation of the structure relative to perturbations of the initial conditions. 

V.P.Maslov appears to be first to pay attention this fact. Singularity of the type of discontinuity of the first kind 

of that models shock waves is the most widely known and profoundly studied. The support of this singularity is 

a sub-manifold of dimension one. The necessary conditions for such a solution to exist are the Hugoiniot 

conditions. From the present point of view these conditions are the first conditions of relations that appear in 

constructing the smoothness asymptotic of the solution in a neighborhood oh the discontinuity. 

    The whole collection of necessary conditions represents the system of ordinary differential equations on 

coefficients of Taylor’s series relative to the distance to the singularity support. This system is not closed in the 

sense that the first N equations contain more than N unfixed parameters, and, therefore, its solutions do not lead, 

for example, to a unique definition of the singularity position. Although the closing of this system is possible 
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only by taking account of global properties of the solution or under certain supplementary assumption, 

nevertheless, by using the numerical analysis P.Prasad discovered the following remarkable fact: if we assume 

the “superfluous” unfixed parameters (the last one) to be equal to zero, then the singularity support position 

coincides sufficient precisely with the singularity support position obtained from the precise solution of the 

initial system of partial differential equations[6]. 

    There are other structural-stable singularities for solutions on nonlinear equations. In particular, there are also 

interesting solutions with weak discontinuity-type singularity, whose support is a sub-manifold of co-dimension 

greater that one (in particular, a point). V.P.Maslov established the hypothesis stating that such solutions can 

describe typhoon and other natural phenomena[1,2,4].  

    A system of two-dimensional nonlinear equations of hydrodynamics, describing the atmosphere of the Earth 

in the geostrophic approximation with account of the Earth’s rotation is considered [1-3,5]. It is shown that for 

the this system in the general case a solution with weak discontinuity-type singularity behaves as  S x y t( , , )    

, where S(x,y,t)>0 is a smooth function, HessS(x,y,t) is not equal zero when S(x,y,t)=0. The necessary conditions 

(an analog  of the Hugoiniot ones)  are obtained for the existence  of a solution in which such a behavior is 

stable under small perturbation. 

    In the presented  paper we deduce the chain of equations which contain a number of unfixed parameters that 

makes it possible to obtain the link  of functions which define the principal term of the asymptotic representation 

of the solution. As was assumed, the center of the weak singularity calculated by using the asymptotic 

representation for a solution of the initial nonlinear system can model the typhoon motion trajectory in the 

atmosphere of the rotating Earth. We performed numerical analysis of corresponding differential equations for 

investigating the trajectory motion of the weak point-type singularity.  

    If we do not consider the process of creation and destruction of vortices in the atmosphere but restrict 

ourselves to the description of the dynamics of such phenomena, then we can use the system of equations for the 

"shallow water" in which the Coriolis forces are taken into account  [1-3,5] 
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Here u = (u u1 2, )  is the velocity vector, η > 0  is the geo-potential, ω / 2 = Ω , Ω sinν  is the Coriolis 

parameter, Ω  is the Earth's rotation frequency, v is the latitude of the position, T =
−
⎛
⎝
⎜

⎞
⎠
⎟

0 1
1 0

 is the matrix of 
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     V. P. Maslov [1,2,4] conjectured that it may be possible to calculate the trajectory of a "typhoon eye" by 

studying the structure of  singularities of solutions to quasi-linear hyperbolic equations. It was proposed to 

describe singular solutions in the following form (for the moment, we do not consider equations (0.1) and by w 

we denote solutions of scalar and vector equations without specifying the form of these equations) 

 

w x t f S x t x t( , ) ( ( , ), , )=                                                                                                             (0.2) 

 

where f x t( , , )τ  is a scalar or vector function, smooth outside the point{ }τ = ∈0 1R  and possessing a 

(possibly, weak) singularity at the point τ = 0 , and S x t( , )  is a smooth function. The zero set of the function 

S x t( , ) determines singular points of the solution (0.2). For example, a singularity may be a first-order 

discontinuity, then we have shock waves, or even be continuous and once differentiable, then we have weak 

discontinuities and vortex singularities.  

       For example, for shock waves in the one-dimensional case we have 

 

w H x t A x t x t= + −( , ) ( , ) ( ( ))Θ ϕ                                                                                            (0.3) 

 

where H x t A x t( , ), ( , ) , and ϕ ( )t  are smooth functions and Θ( )t  is the Heaviside function. Another type of 

singularities is defined by the same formulas, but instead of Θ  in (0.3) we have Sol( )τ  equal to 0 for τ ≠ 0  

and to 1 for τ = 0 . In this case w describes an "infinitely narrow" solution that moves on the background 

H x t( , ) . From the viewpoint of generalized solutions the last solutions is equal to H x t( , ) . However, these 

solution turn out to be quite reasonable if the scalar products and weak solutions are well-defined. Such 

solutions appear, for example, as the limiting ( )as ε → 0  solutions of  the Korteweg-de-Vries equation with 

dispersion ε 2 . 
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         Finally, let us consider a two-dimensional example ( ( , )):x x x= 1 2  

 

w u x t u x t S x t= +0 1( , ) ( , )( ( , ))α                                                                                              (0.4) 

 

where u x t u x t0 1( , ), ( , ) ,  and S x t( , ) ≥ 0  are smooth functions, for each t we have S = 0  only at one point 

( , ) ( ( ), ( )),x x X t X t1 2 1 2=  and α α> ≠0 0, . In this case we have a "pointwise" singularity, and the 

functions X t X t1 2( ), ( )  determine the trajectory of this singularity. 

Solutions of the form (0.2) (0.3) have the following important common properties. 

        First, they are "structurally self-similar". This means that if at a time t0  these solutions have the form (0.2) 

with a given dependence on τ , then this dependence on т is also preserved for the time t t> 0  at least for not 

very large time intervals [ , ]t t0 . 

   Second, these solution possess the properties of "structural stability", that is, a small variation, of the initial 

values for S x t( , )0  or f x t( , , ),τ 0  which  does not change the structure of the singularity of f  with respect 

to τ  and the structure of the coefficients in the original equation, does not change  

the form and the structure of the function w. From the viewpoint of example (0.3), this means that, for instance, 

if for t t= 0  we replace the functions H x t A x t( , ), ( , )0 0 , and the number ϕ ( )t0  by some new ones, namely, 

by ′ ′H x t A x t( , ), ( , )0 0 , and ′ϕ ( )t0  then the structure of (0.3) does not change. Singularities of the form 

(0.4) can be considered in a similar way. It turns out that for many quasi-linear hyperbolic equations that are 

reasonable from the physical viewpoint, the cited structures describe almost all possible singularities with the 

cited properties; in this case α =1 2/  in (0.4) [1,2,4]. This does not mean that the corresponding equation 

admits partial solutions that differ from the cited ones, for example, cylindrically symmetric solutions. However, 

such solutions rapidly disappear under the action of perturbations. 

     Finally, solutions of the form (0.2) have another important property, namely, they can be described by some 

chains of ordinary differential equations.  For example, for solutions of the form (0.3), such chains are written 

for the coefficients H k  and Ak  of the expansions of H and A into the Taylor  

series at the point x t= ϕ ( )  and for the function ϕ ( )t  

 

H H t x tk
k

k
= −

=

∞

∑ ( )( ( )) ,ϕ
0

       A A t x tk
k

k
= −

=

∞

∑ ( )( ( ))ϕ
0

                                                (0.5) 
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    To obtain such chains, we substitute the corresponding expansions into the original equation (or a system of 

equations), differentiate, and set the coefficients at the summands of the equal differentiability equal to zero. 

Here we do not discuss how to construct the product of distributions, how to differentiate them, etc. This theory 

is very interesting and nontrivial [1,2,4]. 

For shock waves, the first equation in such a chain is the well-known Hugoiniot equation, which relates the 

velocity of the shock wave front and the value of the jump of the discontinuity. A general property of all such 

chains is that they actually form an infinite not triangular system of ordinary differential equations, that is, the 

first n equations contain more than n unknown variables. For example, for the coefficients H k  and Ak  in the 

expansion (0.5) of the solution of the Hopf equation ω ωt x+ =1
2

2 0( ) ,  we have the chains  

 

  &
( )

ϕ =
− +H H A

A
0
2

0 0
2

02
 

 

& / ,A H A A A+ + =1 0 0 1 2 0                 & /H H A0 1 0 2 0− =             

 

(0.6) 
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k

H A A Ak j k j j k j
j
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+
+

+ =+ − + −
=

+

∑1
2

2 01 1
1
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& ( )H
k

H H A Ak j k j k
j

k

+
+

− =+ − +
=

+

∑1
2

01 0 1
1

1

 

 

k =1 2, ,K The first relation is the Hugoiniot condition, the other relations are corrections to this condition. 

Similar chains can be obtained for some other nonlinear hyperbolic equations and systems of equations, in 

particular, for equations of barotropic gas. It is very attractive, by using such chains, to analyse the propagation 

of shock waves (singularities) numerically. The first step of this procedure is to close the chain, that is, to make 

this chain well-defined in a way. Such problems are well-known in statistical physics. For example, they are 

used to derive the Boltzmann equation. A very interesting and simple method, which is even naive at first sight, 

was proposed in [6]. Namely, in the first n equations of the chain, the variables An+1  and H n+1  are set to be 

equal to zero. If we compare numerical results obtained for a chain closed in this way with the results of direct 
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computations of shock waves in the original equation, we see a very good coincidence even for a small number 

of equations. Probably,  this fact can be explained as follows. If the functions H(x,t) and A(x,t) are sufficiently 

smooth, then for not very large x t−ϕ ( )  these functions are  sufficiently well approximated by the Taylor 

series. By setting An+1  and H n+1  equal to zero, we simply cut these Taylor series. Obviously, the less the time t 

is the better we can approximate the solution of the Cauchy problem by closed chains for the equations for 

H x t( , ) , A x t( , )  and ϕ ( , )x t [1,2,6]. 

Now let us discuss the setting of the problem for closed chains. In the problem considered we obtain a 

similar chain of equations that, by V. P. Maslov's conjecture, describe the motion of a "typhoon eye". Experi-

mentally, the trajectory of this center, which is described by two functions, can be determined rather reliably, in 

contrast to, for example, the velocity of the air in a large body in atmosphere. We want to reconstruct the 

trajectory of the typhoon eye (that is, of the center of the singularity of the solution satisfying the equation of 

shallow water) for the time t t> 2  if we know its trajectory for t t≤ 2 . In our example of a shock wave 

propagation, a similar problem can be stated as follows.  

Suppose that we know only the function ϕ ( ), [ , ],t t t∈ 0 2  that describes the position of the shock wave 

front. Is it possible to find this function for t t> 2  if we know that  ϕ ( )t  a component of the solution, of the 

system (of ordinary differential equations) of the closed chain obtained from (0.6). For  

example, this is possible if at time t t= 2  we can uniquely reconstruct the values of the functions 

H A H A0 0 1 1, , , ,  etc. via ϕ ( )t  for t t∈[ , ].0 1  Then we can solve the Cauchy problem for the corresponding 

system (a cut chain) for the time t t> 1,  and hence, find ϕ ( )t . The reconstruction problem for all components 

of the solution of a system of ordinary differential equations via one or several components is well-known in the 

control theory.  

       We shall illustrate the above method for the chain (0.6), which are cut at the second step. We take equations 

with k =1 2,  and set H A2 2 0= = . The obtained chain can be easily integrated and we have 

~ϕ =
−

+
+

+
c

c c
t c
t c

3

2 1

1

2

c t c4 5+ ,  where c jj , , , ,=1 5K  are constants of integration. 

Now if we known the function ϕ N t( ),  describing the position of the actual shock wave front, which 

satisfies the Hopf equation on t t t∈[ , ],1 2  then, by choosing the parameters cj  so that on this time interval the 

constructed ~ϕ  be the best approximation of ϕ N t( )  for example, in the sense of mean square error, we can 

extend ϕ N  for the time t t> 2  by setting ϕ ϕN t≅ ~ ( ).  
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We point out that this example is only a simple illustration. We do not discuss whether, in the problem about 

the discontinuity propagation for the Hopf equation, the exact solution ϕ ( )t  can be approximated by the 

function ~ϕ  and how the function ϕ ( )t  changes if we increase the number of equations in the chain (0.6), by 

cutting it for k = 2 3, ,K  Here the results of analytic consideration are not quite clear for us. Nevertheless, for 

the moment, we have no answer to similar questions in the problem about the propagation of vortex singularities 

of two-dimensional equations in hydrodynamics. 

 

1.  Setting of the Problem 

 

      We shall consider solutions of equations of "shallow water" (0.1) in the form: 

 

          η ρ= +( , ) ( , ) ( )x t R x t F S  

                                                                                                                                                    (1.1) 

    

        u = +u x t U x t F S( , ) ( , ) ( )                                                                                         

 

Here x x x t R= ∈ ≥( , ) , , , ,1 2 0R 2 ρ  and S are scalar smooth functions, u v w= ( , )  and U U U= ( , )1 2  are 

vector smooth functions, and S ≥ 0 and for each t we have S = 0 only at one point x = X(t). The function 

F( )τ  (the "singularity" function) is supposed to be: 

 

i)  continuous for τ ≥ 0,  

 

ii)smooth and strictly positive for τ > =0 0 0; ( )F  and ′ → ∞F ( )τ  as τ → +0.  The set 

Γ = = ∈( ( ), [ , ])x X t t T0  is called the trajectory of the singular solution (1.1) satisfying equation (0.1) on 

the interval [ ]0, .T    

 

iii) the matrix of second-order derivatives 
∂

∂ ∂

2S
x x

S
i j

Γ Γ
= Hess  is required  to be non-degenerate and, 

hence, positive on Γ . 
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Finally, the function S is required to satisfy the condition. of "general position" so that iv) the form 

( , )y S yHess Γ  be not proportional to y y1
2

2
2+ .  (In what follows, we show that if solution (1.1) exists and 

the cited conditions on S(x,t) are satisfied at time t t= 0  then these conditions are satisfied at any subsequent 

time). 

We consider the problem of constructing solutions (1.1) or, at least, some characteristics of these solutions: 

first of all, the functions F( )τ , the trajectories Γ , the values of the functions ρ , , ,R u  and U onΓ , some of 

their derivatives, Hess S , , etc., that is, some characteristics of the solution in a neighborhood of the trajectory 

Γ . Though we deal with some special solutions of system (0.1), there exist many such solutions and, in fact, we 

construct a family, depending on some parameters; we denote them by γ γ γ= ( , ).1 2K  Generally speaking, 

there may be infinitely many such parameters. 

Suppose that we have constructed a class of such solutions and that the trajectory of singularities is 

described by X t X t X t( , ) ( ( , ), ( , )).γ γ γ= 1 2 Then, by taking into account V. P. Maslov's conjecture that the 

solutions (1.1) describe mesoscaled vortices and knowing the trajectory of the vortices for the time [ , ]0 T  we 

can reconstruct the trajectory of the future motion of the vortices as follows. Let 

ΓN x= =( 1 X t x X t t t tN N
1 2 2 1 2( ), ( ), [ , ] )= ∈  be the trajectory of an actual vortices. We choose the 

parameters γ γ γ= ( , )1 2K  from the conditions that the trajectories Γ  and  ΓN  are close to each other on the 

time interval [ , ],0 1T  for example, from the minimization condition for the mean square error 

 

 

( ( ) ( , )) ( ( ) ( , )) min.X t X t X t X t dtN NT

1 1
2

2 2
2

0

1
− + − →∫ γ γ                             (1.2)  

 

If we know the parameters γ , we can uniquely determine the trajectory Γ  also for the time t t> 2  The 

number of parameters γ   may be sufficiently large, and we must choose the number of them from the following 

considerations: on the one hand, the class of functions X t( , )γ  must approximate the trajectory of the vortex 

sufficiently well, therefore, as we shall see in what follows, the more parameters γ  we have the better. On the 

other hand, an increase of the number of parameters γ  implies considerable analytic and calculating difficulties, 

so it is natural to try to choose a reasonable number of parameters. We choose them by using "asymptotic" 



 9

considerations, that is, so that the obtained approximate solution of the initial system were, in some sense, the 

leading term of the formal asymptotic solution. 

 

2. Hugoiniot-type Solutions Necessary for the Existence of Vortex Solutions 

 

Now let us state the results. First of all, we present a statement that describes the non-smooth part of the solution 

(1.1), which was stated earlier (in a somewhat different form) and proved by V. P. Maslov  for ω = 0 [1,2,4]. 

Proposition I If system (0.1) has a solution of the form (1.1), satisfying conditions i)-iv), then  

 

     1a. F = τ ,  so that 

     η ρ= +( , ) ( , ) ( , ),x t R x t S x t          u = +u x t U x t S x t( , ) ( , ) ( , ).               (2.2')  

     1b. The trajectory X t( )  is "frozen" into the field of velocities u:      

 

                                    & ( ) ( ( ), )X t u X t t=                                         (2.3) 

 

1c. On the trajectory X t( ) the complex velocities v x t iw x t( , ) ( , )+  (and u u1 2( , ) ( , ))x t i x t+  satisfy 

the Cauchy-Riemann conditions 

                 
∂
∂

∂
∂

v
x

w
x1 2

= ,                 
∂
∂

∂
∂

v
x

w
x2 1

=              for x=X(t)            (2.4)  

     1d. For functions ~ρ = R S and ~u U S= we have  

 

      
~
~ ( ) ( )( ( )), ( )( ( )) ( ( ) )* *
u

A t Q t x X t B Q t x X t O x X t
ρ
⎛
⎝
⎜

⎞
⎠
⎟ = − − + − ×0

3
 

                               ×
−⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

Q t T B Q x X t
O x X t

( ) ( ( ))
( ( ) ) .

*
0 2

0
                  (2.5) 

 

Here Q * =
−⎛

⎝
⎜

⎞
⎠
⎟

cos sin
sin cos

Θ Θ
Θ Θ

is the matrix of rotation through the angle 
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                       Θ Θ Θ( ) ( ) ( ( ), ) ,t p t dt u X t t dt
t t

= + ≡ −∫ ∫0 0 0 0

1
2

rot                       (2.6) 

                      A t u X t t dt
t

( ) ( ( ), )=
⎛
⎝⎜

⎞
⎠⎟ ≡∫exp -

3
2

div
0

 

                               ≡ −⎛⎝⎜
⎞
⎠⎟ ≡

⎛
⎝
⎜

⎞
⎠
⎟∫exp 3

0 00

3 2

q t dt
X t t
X

t
( )

( ( ), )
( ( ), )

ρ
ρ

                                         (2.7) 

 

B
b

b0
1

2

0
0

=
⎛
⎝
⎜

⎞
⎠
⎟ ,  where b b b b1 2 1 20 0> > ≠, , ,  and Θ0 are real constants 

characterizing the structure of the vortex solution. We write 

             q t
v
x

X t t
w
x

X t t u X t t( ) ( ( ), ) ( ( ), ) ( ( ), ),= ≡ ≡
∂
∂

∂
∂1 2

1
2

div                 (2-8) 

                   p t
v

x
X t t

w
x

X t t u X t t( ) ( ( ), ) ( ( ), ) ( ( ), ),= ≡ − ≡
∂
∂

∂
∂2 1

1
2

rot                     (2.9) 

1e. For the derivatives ρ
∂

∂ ∂lj
l j

l j

l jl j
v

x x
X t t( )

! !
( ( ), ),+

+

=
1

 

v
l j

v
x x

X t tlj
l j

l j

l j
( )

! !
( ( ), ),+

+

=
1

1 2

∂
∂ ∂

         w
l j

w
x x

X t tlj
l j

l j

l j
( )

! !
( ( ), ),+

+

=
1

1 2

∂
∂ ∂

                   (2.10) 

 

and v V w V0
0

1 0
0

2
( ) ( ), ,= =  in addition to (2.3) and (2.4), we have the conditions (the initial conditions from the 

"Hugoiniot chain")'. 

 

                                                     & ,X V1 1= & ,,X V2 2=                                        (2.11) 

                             & ,( )V V1 2 10
1 0+ + =ω ρ             & ,( )V V2 1 01

1 0+ + =ω ρ                           (2.12) 

 

                                                       & ,( ) ( )ρ ρ0
0

0
02 0+ =q                                           (2.13)   

 

                        
& ( ) ,
& ( ) ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ρ ρ ρ ρ
ρ ρ ρ ρ

10
1

10
1

0
1 0

11
2

20
2

01
1

01
1

10
1

0
0

11
2

02
2

3 2 0
3 2 0

+ − + + =
+ − + + =

⎧
⎨
⎩

q p w v
q p v w

                                     (2.14) 

                                   & ,q p q p r− + + + =2 2 2 0ω                                                              (2.15) 
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                               & ,p pq q+ − =2 0ω                                                                       (2.16) 

             & ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r pr v w v v w w+ + + + + + + =4
1
2

3
1
2

310
1

20
2

11
2

02
2

01
1

11
2

02
2

20
2ρ ρ                   

                                                   = − + + +ρ 0
0

30
3

03
3

21
3

12
33 3( ) ( ) ( ) ( ) ( )( ),v w w v                               (2.17) 

 

         

& ( )
& ( )

& ( )
&

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

v qv w p v w
v qv w p v v w

v qv w p v w
w qw

20
2

20
2

20
2

11
2

20
2

30
3

11
2

11
2

11
3

02
2

20
2

11
2

21
3

02
2

02
2

02
2

11
2

02
2

12
3

20
2

20
2

3 3
3 2 2 2

3
3

+ − − − = −
+ − − − − = −

+ − + + = −
+ +

ω ρ
ω ρ

ω ρ
ω v p w v

w qw v p w w v
w qw v p w v

20
2

11
2

20
2

21
3

11
2

11
2

11
2

20
2

02
2

11
2

12
3

02
2

02
2

02
2

11
2

02
2

03
3

3 2 2 2
3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
& ( )

& ( ) ,

− − = −
+ + − − + + = −

+ + + − = −

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

ρ
ω ρ

ω ρ

                          (2.18) 

 

                  ρ ρ0
0

30
3

21
3

12
3

03
2

10
1

20
2

11
2

02
23 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )v w v w v w v+ − − + + − −                      

                                                        − + − =ρ 01
0

11
2

02
2

20
23 0( ) ( ) ( ) ( )(v w w                                 (2.19) 

 

2. Conditions (2.3), (2.4), (2.11)-(2.18), and representation (2.5)-(2.7)  

is necessary and sufficient for the functions (1.1) to satisfy the initial equations (0.1) with accuracy 

O x X t( ( ) ).−
3

 

The relations presented in Proposition 1 are some analogs of Hugoiniot conditions and corrections to them 

for solitary vortices in equations of "shallow water" (0.1). 

Here we have no room to present the proof of this statement. We only note that condition (2.3), which 

means that the vortex is "frozen", and the Cauchy-Riemann condition (2.4) follow from the fact that there is a 

non-smooth part in solution (1.1). These conditions can be obtained similarly to  

the ray method or the WKB method applied to the expansion with respect to smoothness. Note that to derive 

these conditions we essentially use statement iv) about the "anti-symmetry" of the vortex. In what follows, by 

general considerations, we obtain relations similar to (2.5)-(2.7) from higher-order Taylor expansions for S U, ,  

and R.  To obtain conditions (2.ll)-(2.19), we successively differentiate the initial system with regard for (2.3)-

(2.4) and calculate the result at points of the trajectory x X t= ( ).  In fact, this part of the proof only requires 

very cumbersome calculations. 

Formulas (2.5)-(2.7) are transparent and can be easily analyzed. The function ~u  describes the motion of a 

solitary vortex in the field of velocities u ( , ).x t  This fact is well-known in hydrodynamics. So, since this fact 
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takes place for solutions of the form (1.1), this solution does not contradict the laws of hydrodynamics. 

Nevertheless, this fact must be proved for solutions of the form (1.1). It is rather curious that the Cauchy-

Riemann conditions (2.4) must be satisfied. This condition is not invariant for (all) trajectories of the field of 

velocities, and thus, shows how a vortex effects the "smooth background" u x t( , ) . The vortex itself moves 

along the trajectory X(t) and rotates (due to the Cauchy-Riemann conditions) with angular velocity 

&θ =
1
2

rot u X t t( ( ), ).  In the main, the "section" of the vortex is an ellipse with half-axes given by b1  and b2  

and the initial angle Θ0 . We note that with the growth of the distance from X(t) the "vortex" (non-smooth) part 

of the solution increases rather slowly, that is, as x X t− ( ) ,
2

 and the function (2.5) increases as x X t− ( ) .
3

 

This slow increase of (2.5) is an argument to use these functions for the description of typhoons, since it shows 

that the typhoon has an "eye". Finally, note that the described dynamics of the vortex remains asymmetric. In the 

first approximation, the vortex is conformally transformed: it equally rotates, contracts, and extends in all 

directions, the extension coefficient is determined by the divergence of the field of velocities u(x,t) on the 

trajectory X(t). 

 

3. Closing of the Chain 

 

We see from relations (2.17)-(2.18) that along with (2.11)-(2.16) they form an underdetermined system of 

differential equations. If we write necessary conditions that relate the next Taylor coefficients for the functions 

u, ,ρ  S U, ,  and R, then this situation preserves. In other words, we obtain a non-closed chain of equations. We 

have a problem how to close this system. As we have already mentioned, the problem of closing chains is one of 

the most complicated and interesting problems in mathematical physics. Recall that, in particular, by closing the 

chains describing the density distribution functions, we obtain the Boltszmann equation. Here we close the chain 

as in the papers [11, 22]. For the function ρ  we set the summands with coefficients at the third-order 

polynomials equal to zero and assume that 

 

 

                                     3 3 030
3

12
3

03
3

21
3v v w w( ) ( ) ( ) ( )+ + + =                                          (3.20) 

and 

                                       ρ ρ ρ ρ30
3

21
3

12
3

03
3 0( ) ( ) ( ) ( ) .= = = =                                           (3.21) 
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In other words, we set the functions on the right-hand sides in (2.17)-(2.18) equal to zero. (In conjunction with 

(2.19), relation (2.20) means that v30
3( ) , w w21

3
03
3( ) ( ), ,  and v12

3( )  are related to the preceding coefficients: 

 

3 330
3

21
3

03
3

12
3w w w v( ) ( ) ( ) ( )( )+ = − + = 

            = + − − + −
1
2

3
1
2

310
1

20
2

11
2

02
2

01
1

02
2

11
2

20
2ρ ρ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )v w v w v w                  (3.22) 

 

generally speaking, this means that it is impossible to set all third-order derivatives of the functions v, w, and p 

equal to zero and to preserve the discrepancy O x X t( ( ) )−
3

 in (0.1)). Now we obtain a closed system of 

ordinary differential equations. 

 

Proposition 2 Suppose that the coefficients ρ k k ku v k k k( ) ( ) ( ), , , ( , ),3 3 3
1 2= k k k≡ + =1 2 3, are chosen by 

the above method, the coefficients ρ k
k( ),  vk

k( ) , and w k
k( )  satisfy equations (2.11)-(2.18) for k ≤ 2,  

and S U R, ,  have the form (2.5)-(2.7). Then the functions (1.1) satisfy the original system with accuracy 

O x X t( ( ) )−
3

 for all values of the Taylor coefficients for the functions u v w U U U R= =( , ), ( , ), , ,1 2 ρ and 

S k k k k, ( , );= ≥1 2 4  for v w, , and ρ , k ≥ 2  for U and ρ k ≥ 3 for S. In particular, by setting all 

"higher-order" coefficients equal to zero, we obtain an approximate solution of the form (1.1) 

modO x X t( ( ) )−
3

 with u U R, , , ,ρ , and S of polynomial form (with powers less than or equal to 3) 

depending on ( ( )).x X t−  

Thus, after the chain is cut, we obtain, in a sense, an asymptotic solution (with respect to powers of  x — X(t)) 

of the initial equation. 

We do not know, at least for the moment, how to prove rigorously the fact that, by closing the chain as 

proposed above, we obtain the trajectory of the singularity X(t) that is close to the actual trajectory of the vortex 

for some times. However, as we shall see in what follows, the desired solution. of the closed chain must be stable 

(we choose only stable solutions). Therefore, if we assume that the right-hand sides in (2.17) and (2.18) do not 

vanish but are sufficiently small, then, probably, one can prove that their contribution to the solution is small. On 

the other hand, it is required to have at least the discrepancy O x X t( ( ) )− 3  on the right-hand side of (0.1) to 

determine the "higher-order" part of the non-smooth component of solution (1.1). Therefore, we have cut the 
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chain at a reasonable step; if we cut it at the previous step (that is, we set the coefficients v w20
2

20
2( ) ( ), , v 02

2( ) , etc. 

equal to zero), then it is impossible to give a true description of the higher-order non-smooth part of the solution. 

If we consider more equations, then we obtain much more complicated equations for the Taylor coefficients. 

Numerically and analytically, we can show that if we consider only the first- and second-order summands, we 

obtain a different behavior of the system that contains second-order summands. 

 

4. Reduction of a "Cut-off" Chain to the Hill Equation 

 

It is remarkable and rather unexpected that the system (2.11)-(2.21) can be reduced to the Hill equation 

 

d y
d

q y
2

2 0 0
Φ

Φ Ω+ =( , , ) .β                                                                          (4.23) 

 

Here 

 

( ) ( ) ( ) ( )q i i i i= + + − + − −
⎛
⎝⎜

⎞
⎠⎟Ω Φ Φ Φ Φ0

2 0 1
0 1 1 2 0 22

2 2Re exp exp exp exp
β β

β β β β β β ,  

 

complex parameters β 0 ,β 1 , and β 2 , and a real parameter Ω 0 0≥ are constants of integration, 

β β β β= ( , , ).0 1 2  

According to the general theory of the Hill equation , the solutions of equation (4.23) may behave as follows: 

Stable case. We can compose the basis of solutions of equation (4.23) from solutions of the 

form y y i y y i= = −0 0exp( ), exp( ),ΩΦ ΩΦ where Ω  is a real number called a characteristic index and 

y0 0( , , )Φ Ωβ is a complex smooth function, which is 2π -periodic with respect to Ф and does not vanish. The 

functions y0  and the number Ω  are determined up to a normed coefficient and up to a sign of Ω . Moreover, to 

Ω one can add any number multiple of π . We shall fix our choice of y0  and Ω as follows.  

We shall need 

                                                 y
y

y
y

i
∂
∂

∂
∂Φ Φ

− = 2 ,                                             (4.24) 
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that is, we need that the solution у corresponds to second-order multiplicators [1,2,4]. In particular, it 

immediately implies that y ≠ 0  and that the smooth functions g y( )Φ = and θ = Arg y( )Φ  are defined; in 

this case they satisfy the relation 
d
d

g
θ
Φ

Φ=1 2/ ( ) . Moreover, we can take Ω  in the form 

Ω Φ Φ= ∫
1

2
2

0

2

π
π

d g/ ( ) The argument θ  can be completely determined from the relation Θ Φ| = =0 0  thus, 

we obtain 

 

                                               θ = ∫ d gΦ Φ
Φ

/ ( )2

0
                                                                   (4.25) 

 

Obviously, θ θ= +ΩΦ Φ0( ) where θ 0  is a 2π − periodic function of Ф. The number Ω  is called a 

quasi-momentum. Equation (4.23) is called strongly stable if Ω ≠ =n n/ , , , ;2 0 1 2 in this case, the property 

of being stable is preserved for small variations of the parameters β  and Ω . If Ω = n / 2 , then the solutions 

y and y  turn. out to be periodic or anti-periodic functions'. Nevertheless, the stability property is not preserved 

if the parameters β  and Ω  change. 

Non-stable case. In this case, at least one of the solutions of equation (4.23) increases infinitely (linearly or 

nonlinearly) asΦ→ ∞ . Now let us state the main result about the cut chain (2.11)-(2.21). 

 

Proposition 3 (Reduction of the problem about the pointwise vortex singularity to the Hill equation). Letω > 0 , 

then: 

 1a. If the parameters β  and Ω0  lie in the region of "exponential" non-stability, then there exists a (infinite) 

sequence of time instants t t t m1 2, , , , ,K K  such that the sequence ρ 0
0( )| t t m= either grows exponentially fast 

or decreases exponentially fast. 

1b. If the parameters β  and Ω0  lie in the stability region, then for any t the component ρ 0
0( )( )t  is strictly 

bounded below and above by positive constants. In this case, ρ 0
0( ),  the velocity components V1  and V2 , and 

the trajectory ( , )X X1 2  are expressed in terms of the functions g( )Φ  andθ ( )Φ , that is, via the solutions of 

the Hill equation (4.23) as follows: 
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                                 ( )ρ
ω µ
µ ω0

0
2

2
02 1 1 2

( ) ( )
( ( ) ( ) / )

=
− − −

g
c t t

Φ

sin2
                                   (4.26)                    

 

      V V1 = Re ,       V V2 = Im      V i t
i

c
I V= − ++exp( )( )ω

ω
µ4

0                         (4.27) 

X X1 1= Re ,              X X2 = Re ;  

 

 

X X
c

i t I I
i

i t V= − − + + − −+ −
0 01

4
1

1
µ ω

ω
ω

ω( ) ( ) )exp( ) exp(  

 

Here V V iV0
1
0

2
0= +  and X X iX0

1
0

2
0= + are complex constants of integration, t c0, , and 

µ µ( , )c ≠ < ≤0 0 1  are real constants of integration, 

 

( )I
i t

g i
t

± = ± − ± −∫exp( cos sin
ω

µ θ θ θ0
0 002

) ( ) ( ( ) ) ( ( ) )
( )

Φ Φ Φ Φ
Φ

 

× − − − +exp( exp( exp( )
i

i i d
Φ

Φ Φ Φ
2

2 20 1 2)( ) ) ,β β β                                   (4.29) 

 

 and Φ( )t related to t by the formula 

 

Θ Φ Θ Θ( ) ( ) ,= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ =

⎛
⎝⎜

⎞
⎠⎟Arctg tg Arctg tgµ

ω
µ

ω
2 20 0 0 0t t t              (4.30) 

 

By Arctg we denote the value for which, in the first case, θ θ( )Φ − 0 lies in the same interval 

[ ]π πn n, ( )+1  as ω / ( )2 0t t− and, in the second case, во lies in the same interval [ ]π πn n, ( )+1  as 

ω t0 2/  

2. Letω = 0 ,  then ρ 0
0 21( )~ / t  for t >>1. 

So, formulas (4.26)-(4.28) define a class of functions that depend on five complex and four real parameters. 

We shall look for the trajectory of vortex singularities of equation (0.1). We also note that the functions 
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gcos( )θ − Φ0 and g sin ( )θ θ− 0 satisfy the Hill equation (4.23). Hence, we can also say that the above 

formulas define a (nonlinear) transformation that connects the cut chain (2.11)-(2.21) with the linear equation 

(4.23). Obviously, the function ρ 0
0( )  is a almost periodic function with two periods; this function depends on 

three complex parametersβ β0 1, , , and β2  and on four real parameters 

Ω0 0 0 0 1> ≠ < ≤, ,c µ and [ ]t 0 0 2∈ , π . The functions V1 and V2 depend on an additional complex 

parameterV 0 , and the functions X 1 and X 2 depend also on the parameter X 0 . 

Finally, we present here the formula that relates rot и on the trajectory and ρ 0
0( ) : 

 

                                                       rot u cx X t| ( )
( )

= = − −ρ ω0
0                                            (4.31) 

 

By its physical meaning, ρ 0
0( )  must be a positive bounded function that for all t is bounded away from 0 by 

a positive number. Therefore, if the Coriolis force is absent, the chain (2.11)-(2.21) has no physically interesting 

solutions. Thus, physically reasonable stable solutions ρ 0
0( )  are possible because of the presence of the Coriolis 

forces. Note that near the equator, where ω = 0  typhoons have never been observed [3,5]. 

First approximation. Generally speaking, formulas (4.28)-(4.30) define a sufficiently fast oscillating function if 

time interval, in which we are interested in., contains some intervals ( , / )0 4π ω . The amplitude of these 

oscillations is the greater the more is the difference between the potential q and a constant. Since the 

experimental trajectory, which we want to approximate by a function of the form (4.28)-(4.30), is described by a 

smooth curve, it is natural to assume that the parameters β 0 ,β 1 , and β2  in (4.28)-(4.29) are sufficiently small 

and integrate the Hill equation by the averaging methods. Then if we write β β β β= + +0

2

1

2

2

2
, in 

the first approximation we obtain 

( )g = +
1

0
0

2

Ω
β ,              ( )θ β= +Ω Φ0

2
0  

We substitute g and θ   into (4.28)-(4.30), perform the calculations, combine some terms that appear after the 

integrals J ±  with X 0 and V 0  are calculated, and arrive at the following statement. 
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Proposition 4 Suppose that ω β> 0,  andΩ0  belong to the stability region of equation (4.23) and the β  is 

sufficiently small, then the function X has the form 

 

( )X A A i t
ic

i t
t t

= + − + − −
−

+1 2
0 2 2 04

2 1
2

1exp( ) exp( )ω
ω

ω µ
ωΩ

/ sin
( )

  

×
−

−
−

−
−

⎛

⎝
⎜

⎞

⎠
⎟exp( )

exp(-2 ) exp(- )
i

i i
Φ

Ω
Φ

Ω
Φ

Ω
/

/ / /
2

1 4
2

9 4 1 4
0

0
2

1

0
2

2

0
2

β β β
 

+
− −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟O

β
3

0
2

0
21 4 9 4min( / , / )

.
Ω Ω

                  (4.32) 

 

Here A1  and A2 are "new" complex constants of integration, and Φ Φ= ( )t can be calculated by the formula 

 

             Φ
Ω Ω

=
−⎛

⎝⎜
⎞
⎠⎟
+

⎛
⎝⎜

⎞
⎠⎟

1
2

1
20

0

0

0Arctg tg Arctg tgµ
ω

µ
ω( )

.
t t t

                          (4.33) 

 

Note that in the last formula for X the number of constants is reduced by one, since the parameter с can be 

included into β 0 ,β 1 , and β2 . This formula shows that for small β  all summands in (4.32), except A1 and 

the summand that contains ( )exp(
i t( )

/ / ,
Φ

Ω
−

−
ω

β
2

1 40 0
2 , oscillate with frequency greater than w/2. By 

definition of the functionΦ( )t , we easily obtain Φ
Ω

Φ= +
ω

µ
t

t t
2 0

0
~ ( , , ), where ~Φ is a periodic function with 

periodT =
π
ω

;  therefore the whole function X  (4.32) oscillates sufficiently fast if the frequency Ω0 differs 

strongly from 1/2, and such a function badly approximates the trajectory of the "typhoon eye". Thus we 

conclude: the frequency Ω0  must be close to 1/2. 

Now, instead of the free parametersβ 0 , β 1 , andβ2 , we introduce the new parameters 

 

 A
ic

0
0 0

0
2

4
1 4

=
−

Ω

Ω

β
,                   ( )A

i c
3

1 0

0
2

8
9 4

= −
−

β

ω

Ω

Ω
,  A

ic
4

0 2

0
2

4
1 4

= −
−

Ω

Ω

β
ω ( )

.    
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Then the complex vector-function that determines the trajectory takes the form: 

 

X X t t A A A i t≡ ≈ + −( , , , , )Ω0 0 1 2µ ωexp( ) + 

( )+
−

+ + − −
−

exp( ) exp exp(-2 ) exp(- )i
t

A A i A i A
t t( )

( ) ( ) sin
( )

( . )
Φ

Φ Φ
ω

µ
ω

2
1

2
4 340 3 4

2 2 0  

 

where Φ Φ Ω= ( , , , )t tµ 0 0 is determined by (4.33). The above arguments imply that this function can 

approximate a smooth trajectory if Ω0 is close to 1/2 and the module of complex parameters A2 , A3 , and 

A4 turn out to be less than the module of the parameters A0 and A1 . Note that this requirement does not 

contradict the assumption that β 0 ,β 1 and β2  are small. This means that β0 0
2 1 4~ /Ω − , and that β2  has 

the order of smallness less than that of β0 . If we reconstruct the trajectory of an. actual typhoon, we determine 

the parameters A , , ,Ω0 µ  and t0 by condition (2.2). 

In conclusion, taking into account the above considerations, we perform one more approximation. For this 

purpose, in (4.34) we omit the summand that includes the coefficients A2 , A3 ,and A4 . Moreover, if we assume 

that 1− µ   is not very large, then we obtain X A i t A≈ + −1 02exp( )( ) /Φ ω . On the plane ( , )X X1 2  this 

equation describes a circle with center at the point ( , )ReA ReA1 2  and radius A0 . If the angular velocity 

 

( )
&

( ( ) sin ( ) / )
Φ

Ω
− =

− − −
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ω ω

µ
µ ω2 1 1 2

1
0

2 2
0t t

 

 

is nonnegative, then the motion is counter-clockwise, if non-positive, then clockwise. The angular velocity is 

nonnegative (the motion is counterclockwise) if, at least, µ > 2 0Ω and non-positive (the motion is clockwise) 

ifµ < 2 0Ω . Note that, since we suppose that Ω0 is close to 1/2, the velocity of the motion along the circle is 

essentially less thanω , and during some periods T = 2π ω/  the "vortex singularity" goes only through a part 

of the circle. 

   The results obtained make it possible to established the following hypothesis, which may be basis for a 

prediction method for the expansion of a real mesoscaled vortices. Let us assume that there exists a system of 

equation that model the singularities dynamics and let its solutions (similar to those we have considered in the 
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present paper) correspond to a real vortices. If we know the real vortices trajectory on a some initial time 

interval and choose the initial conditions for the corresponding differential equations in such a way that the real 

and calculated trajectories are close on this initial time interval, then we can suppose that the calculated vortices   

trajectory also is close to the real one on the next time interval.  

  This work supported by Russian Foundation of Basic Research, Grant 99-01-00856. 
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